Google

Tuesday, April 1, 2008

Server hosting

The Domain Name System (DNS) associates various sorts of information with so-called domain names; most importantly, it serves as the "phone book" for the Internet by translating human-readable computer hostnames, e.g. www.example.com, into the IP addresses, e.g. 208.77.188.166, that networking equipment needs to deliver information. It also stores other information such as the list of mail exchange servers that accept email for a given domain. In providing a worldwide keyword-based redirection service, the Domain Name System is an essential component of contemporary Internet use.

The most basic task of DNS is to translate hostnames to IP addresses. In very simple terms, it can be compared to a phone book. DNS also has other important uses.

Above all, DNS makes it possible to assign Internet names to organizations (or concerns they represent), independently of the physical routing hierarchy represented by the numerical IP address. Because of this, hyperlinks and Internet contact information can remain the same, whatever the current IP routing arrangements may be, and can take a human-readable form (such as "example.com"), which is easier to remember than the IP address 208.77.188.166. People take advantage of this when they recite meaningful URLs and e-mail addresses without caring how the machine will actually locate them.

The Domain Name System distributes the responsibility for assigning domain names and mapping them to IP networks by allowing an authoritative server for each domain to keep track of its own changes, avoiding the need for a central registrar to be continually consulted and updated.


The practice of using a name as a more human-legible abstraction of a machine's numerical address on the network predates even TCP/IP, and goes all the way to the ARPAnet era. Back then however, a different system was used, as DNS was invented only in 1983, shortly after TCP/IP was deployed. With the older system, each computer on the network retrieved a file called HOSTS.TXT from a computer at SRI (now SRI International). The HOSTS.TXT file mapped numerical addresses to names. A hosts file still exists on most modern operating systems, either by default or through configuration, and allows users to specify an IP address (eg. 208.77.188.166) to use for a hostname (eg. www.example.net) without checking DNS. As of 2006, the hosts file serves primarily for troubleshooting DNS errors or for mapping local addresses to more organic names. Systems based on a hosts file have inherent limitations, because of the obvious requirement that every time a given computer's address changed, every computer that seeks to communicate with it would need an update to its hosts file.

The growth of networking called for a more scalable system: one that recorded a change in a host's address in one place only. Other hosts would learn about the change dynamically through a notification system, thus completing a globally accessible network of all hosts' names and their associated IP Addresses.

At the request of Jon Postel, Paul Mockapetris invented the Domain Name system in 1983 and wrote the first implementation. The original specifications appear in RFC 882 and RFC 883. In November 1987, the publication of RFC 1034 and RFC 1035 updated the DNS specification[2] and made RFC 882 and RFC 883 obsolete. Several more-recent RFCs have proposed various extensions to the core DNS protocols.

In 1984, four Berkeley students — Douglas Terry, Mark Painter, David Riggle and Songnian Zhou — wrote the first UNIX implementation, which was maintained by Ralph Campbell thereafter. In 1985, Kevin Dunlap of DEC significantly re-wrote the DNS implementation and renamed it BIND (Berkeley Internet Name Domain, previously: Berkeley Internet Name Daemon). Mike Karels, Phil Almquist and Paul Vixie have maintained BIND since then. BIND was ported to the Windows NT platform in the early 1990s.

Due to BIND's long history of security issues and exploits, several alternative nameserver and resolver programs have been written and distributed in recent years.


The domain name space

The domain name space consists of a tree of domain names. Each node or leaf in the tree has one or more resource records, which hold information associated with the domain name. The tree sub-divides into zones. A zone consists of a collection of connected nodes authoritatively served by an authoritative DNS nameserver. (Note that a single nameserver can host several zones.)

When a system administrator wants to let another administrator control a part of the domain name space within his zone of authority, he can delegate control to the other administrator. This splits a part of the old zone off into a new zone, which comes under the authority of the second administrator's nameservers. The old zone ceases to be authoritative for what goes under the authority of the new zone.




No comments: